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The phase vocoder is an analysis-synthesis system that has as intermediate data the
time-variant discrete Fourier spectrum of the input signal. It can be formulated in such a way
that the synthesized signal is identical to the original, both theoretically and practically. The
intermediate data can be transformed, also with no loss of information, into the more
conventional magnitude and frequency representation. These intermediate data can then be
used to resynthesize the tone at different pitches or different rates than the original with the
advantage that when no modification is made, the synthetic tone is absolutely identical to the
original. This represents a significant advance over the Heterodyne filter, which placed severe
restrictions on the amount of variation in pitch or amplitude that could be analyzed. The
phase vocoder has no such restrictions and can just as easily deal with vibrato and inharmonic
tones.

Since scaling the frequencies in the phase vocoder analysis data also scales the spectrum
up, use of this modification with speech can produce altered vowel tones. If this method is
combined with the linear predictor, using the phase vocoder to alter the pitch of the error
signal, then the spectrum can be held constant while the pitch is changed, thus allowing
independent control over time, pitch, and spectrum. Vowel quality can be preserved or
altered at will. Again, if no modification is made, the combination of the linear predictor and
the phase vocoder is an identity, both theoretically and practically.

This research is still in a very preliminary state, so only a few sound examples can be given
at this time. A full theoretical explanation, however, can be given.

DEFINITION: A complete discussion of the mechanics technique. This definition is taken directly from Portnoff.

of the implementation of the digital phase vocoder may be Let x(n) represent samples of a speech waveform. The

found in Portnoff [1 ]. We will only review the definitions discrete short-time Fourier transform ofx(n) is defined as

here. Our contribution comes in the application of this follows:

* This paper was presented 'at the 55th AES Convention, Xk(n) = x_ x(r)h(n- r)WN -rk,
October 29-November 1, 1976 in New York. r = -o_

t Dr. Moorer is now working at IRCAM in Paris. for k.= 0, 1, · · ·, N - 1 (1)
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where WN = exp[j(2z'/N)] and h(n) is an approximately MAGNITUDE-FREQUENCY CONVERSION
chosen window. By properly choosing h(n), it can be If we run a perfectly periodic waveform through Eq. (1)
guaranteed that the original sequence x(n) is exactly with N set equal to (or greater than) the number of samples
recoverable from its short-time transform as defined by in a period, then each channel of the phase vocoder (to use
Eq. (1). Furthermore, x(n) is given in this case by Flanagan's original terminology [4]) will cover no more

x(n) = _ Xk(n)WN'm, for all n. (2) than one harmonic of the input waveform. This being the
k = 0 case, the real and imaginaryparts of the outputwillthen

It is useful to consider Eqs. (1) and (2) in terms of a just be the cosine and sine of a frequency that corresponds
bank of digital bandpass filters with contiguous passbands, to the difference of the frequency of the harmonic in that
Consider a set of N complex bandpass filters {hk(n)}with channel and the center frequency of the channel. The
passbands equally spaced about the unit circle and with center frequencies are, of course, equally spaced around
unit-sampleresponses the unit circle. We can then see that we can get the

1 ,m amplitude of the harmonic by taking the square root of the
hk(n) = _h(n)WN · k = 0, 1.... , N - 1 (3) sum of the squares of the real and imaginary parts of the

where h(n) is a prototype low-pass filter with real unit- channel output. Likewise, we can get the frequency of the
sample response. For the analysis-synthesis system harmonic by taking the derivative of the phase angle as
defined in Eqs. (1) and (2) to be an identity, the only defined by the arctangent of the imaginary part over the
condition is that h(n)=0 forn being all integer multiples of real part. To depict this in formulas, let a k(n) be the real
N. This condition is precisely the constraint on the part of the output of the kth channel and bk(n) be the
unit-sample response of a digital interpolating filter [2]. imaginary part of the output of the kth channel.

NOW WHAT HAVE WE GOT?

If we think of this system as a bank of bandpass filters, Ac(n) = V'ae(n) 2 + bk(n) 2 (4)
we can see that what comes out are the real and imaginary

parts of the signal in each of the N equally spaced [ be(n)'_
frequency bands. The difference between this and a Oe(n) = atan[a-e-_--_// (5)
conventional channel vocoder [3] is that the phase infor-
mation is preserved in each channel and that we can

guarantee that the output is exactly identical to the input. 0 = ae(n)be(n) - be(n)cie(n) (6)
Notice that the output of each channel is band-limited by ak(n)2 + bk(n)2
the filter so that each channel may be resampled at a lower
rate, thus reducing the data involved. If the prototype Since we are working with sampled-data functions, the

low-pass filter h(n) were perfect, we could resample the derivatives here should be evaluated with linear-phase
transform data Xe(n) by just taking every Nth point. This finite impulse response band-limited differentiators. The
means that the transform data would be exactly the same only trouble with these formulas is that the functions
amount of the data as the input data. This is reassuring described in Eqs. (4) and (6) are nonlinear and are thus
because it means that analyzing sound in this manner does non-band-limited. This lack of band-limiting means that
not, by itself, produce a data explosion. In practice, the magnitude and frequency can not be resampled every
however, we must resample somewhat more often than Nth point like the real and imaginary parts of the channel
this. At Stanford we are resampling at twice the minimum output can. This is where the data explosion occurs. In
rate, and this seems to be more than adequate, fact, to do the magnitude-frequency conversion at all,

We should say something about the filter involved. It ak(n) and be(n) must be available at the original sampling
should be a linear-phase filter because otherwise when rate. This means that they must be obtained by applying
modifications are made to the transform data, peculiar Eq. (1) at each point in time or by interpolating the
things happen. For example, when working with digitized resampled functions using a band-limited interpolator [2],
speech this way, without a linear-phase filter, the synthe- [5]. We must be careful here, because the filter used to
sized speaker sounds drunk, presumably because the faster interpolate the functions must satisfy the same conditions
changing attributes happen at different times than the more as our prototype low-pass filter, which are that h (n)=0 at n
slowly changing features. Discontinuities are not pre- equal to all integer multiples of N.

served because the phase relations are changed. Even if we do the conversion as above, taking care of
Already we can make one kind of modification to the all the messy details, then we are no longer guaranteed

data: we can accomplish the effect of filtering the original that the resulting synthesis is identical to the original. For
signal simply by multiplying the channel output so as to instance, the initial phase angles are lost. In most cases
change the contribution from selected channels. We can this does not make much difference. The difference comes

give a "formant" effect by increasing the contribution in waveforms with discontinuities either in the signal or in
from a particular region. There is, however, no particular its first derivative. To duplicate the discontinuity, the
advantage to performing filtering in this way rather than phase relations must be preserved. For this reason we have

using conventional digital filters. The most interesting developed another way of doing the magnitude-frequency
modifications can be made when the output of each conversion that guarantees identity again. This can be
channel is converted to magnitude-frequency form. done using simple trigonometric identities as follows:
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sin{Ok(n)- Ok(n - 1)} = sin{Ok(n)}cos{Ok(n -- 1)} -- cos{Ok(n)}sin{Ok(n- 1)}

= bk(n)ak(n- 1) --ak(n)bk(n- 1) (7)

cos{Ok(n) -- Ok(n -- 1)} = cos{Ok(n)}cos{Ok(n -- 1)} + sin{Ok(n)}sin{Ok(n -- 1)}

= ak(n)ak(n -- 1) + bk(n)bk(n - 1) (8)

(sin{Ok(n)--Ok(n--1)} )AOk(n) = atan cos{Ok(n) Ok(n 1)} (9)
phase vocoder, however, we can now modify this error

with theinitialconditions0k(0) = 0, ak(0)= 1,bk(0)= 0. signal. We can change its pitch or its timing, then
reimpose the spectral shape by applying the optimum filter

This gives us a sequence of angle differences for each again. This gives us independent control over the timing,
channel that have the properties of a frequency with the spectrum, and pitch of the sound, a powerful combination
added bonus that we can still recover the original signal indeed. The remaining problems, however, are considera-
exactly.

SOME RESULTS
750

Figs. 1-6 show the results of applying the aforemen-
tioned analysis technique [Eqs. (1), (4), (7), (8), and (9)]
to two isolated musical tones (piano and tenor saxophone) _ _o
and to a short segment of human voice. Again, tones
synthesized from these data are indistinguishable, numeri- em

cally, theoretically, and perceptually, from the original. We _ _
showthe first and fifthharmonicsOfeach tone. We see ................

that when the tone is not present, the frequency trace goes p01_,_ 1

crazy.Thisisbecausewearethenanalyzingtapehiss,and 1
/

we can expect the frequency to be random there. Note, Jhowever, that the frequency is still quite active during the

attack portion of these tones. This is a demonstration of _ 25o
the non-band-limited nature of the frequency due to the .lff_
highly nonlinear transformation implied by Eqs. (7)-(9). JIf we artifically band-limit the frequency by, for instance,

filteringit so thatwe can reducethe amountof databy o ........
resampling,then we lose fidelityon somekinds of tones, o_ 'o_ o_ ' o1_
The tenor saxophone tone comes through ok but the attack _ uriNsm:m;
of the piano tone becomes less abrupt. It is as if the Fig. 1. Amplitude and frequency curves of the firstharmonic
hammer were made of putty. The human voice tone is of a piano tone (A3,220 Hz).

even worse. Fig. 5 shows that the fundamental is pretty
well behaved, but the fifth harmonic shows very erratic 10o
behavior of the frequency. It is hard to determine what this
is telling us. It is a strong indication that the human voice

is not particularly periodic, even during the more continu- _ so
ous regions, that there is considerable phase jitter on the
upper harmonics. If this is true, it is not the least bit
surprising then that conventional vocoders, such as the
linear prediction vocoder, do not capture the "natural" : .............. -"_. _'-'
voicesound,but invariablysounda bit "raspy." If we do p01_,_ s
not simulate this behavior, then we cannot hope to capture 12so
the tone quality accurately.

APPLICATIONS AND FUTURE DIRECTIONS

When this technique is combined with the linear predic-
tor, a uniquely powerful combination results. The linear 1000
predictor can also be formulated as an identity system as
follows. If you filter a signal by its optimum inverse filter,
yougetwhatiscalledthe "error" signal.Ifyouthentake o c o
the error signal and filter it by the noninverse filter, you 'nurmm::o',m

get the original signal back, both in theory and in Fig. 2. Amplitude and frequency curves of the fifth harmonic
.. practice--nothing has been done to the sig'nal. Using the of a piano tone (A3,220 Hz).
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Fig. 3. Amplitude and frequency curves of the first harmonic Fig. 5. Amplitude and frequency curves of the first harmonic
of a note from a tenor saxophone, of a vocal tone.
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Fig. 4. Amplitude and frequency curves of the fifth harmonic Fig. 6. Amplitude and frequency curves of the fifth harmonic

of a note from a tenor saxophone, of a vocal tone.
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